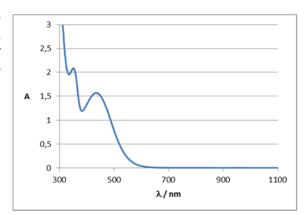

Espectros electrónicos

$$h = 6.626.10^{-34} \text{ Js}$$
 $N = 6.023.10^{23} \text{ mol}^{-1}$ $c = 2.998.10^8 \text{ ms}^{-1}$ $l = 1 \text{ cm}$

1. Na figura seguinte estão representados os espectros electrónicos dos complexos $[Ni(H_2O)_6]^{2+}$ e $[Ni(NH_3)_6]^{2+}$. Verifique se o número de bandas $(d\rightarrow d)$ está de acordo com o previsto e atribua cada espectro ao respectivo complexo, justificando. Calcule os coeficientes de extinção molar (ϵ) e Δ_{oct} . Calcule a energia de estabilização de cada um dos complexos, com base nos valores de Δ_{oct} .

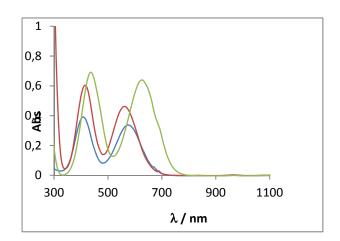


A (0,0553 mol/L)	
λ/nm	Abs.
946	0,2122
577	0,2898
359	0,4036

B (0,109 mol/L)		
λ / nm	Abs.	
720	0,2198	
656	0,1956	
394	0,5471	

2. O espectro do complexo [Fe(acac)₃] em solução aquosa (8,9*10⁻⁴ mol/L) é apresentado na figura seguinte. Calcule os coeficientes de extinção molar (ϵ), preveja o número de transições d \rightarrow d possíveis e conclua sobre a origem das bandas observadas. Tem dados para calcular Δ_{oct} ?

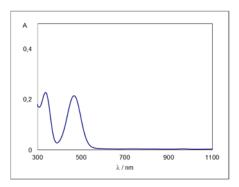
λ / nm	Abs.
436	1,6416
350	1,9894



3. Os espectros dos complexos de Cr(III) [$Cr(H_2O)_4Cl_2$]⁺ (0,0375 mol/L), [$Cr(C_2O_4)_2(H_2O)_2$]⁻ (0,0112 mol/L) e [$Cr(H_2O)_6$]³⁺ (0,0241 mol/L) são apresentados na figura seguinte. Calcule os coeficientes de extinção molar (ϵ) e Δ_{oct} . Justifique a ordem dos valores de Δ_{oct} obtidos e calcule a energia de estabilização de cada um dos complexos, com base nos valores de Δ_{oct} .

$[Cr(H_2O)_6]^{3+}$	
λ/nm	Abs
573,5	0,3373
408	0,3912

$[Cr(C_2O_4)_2(H_2O)_2]^{-1}$	
λ/nm	Abs
561,5	0,4623
415,5	0,6045


[Cr(H ₂ O) ₄ Cl ₂] ⁺	
λ/nm	Abs
625,5	0,6399
436,5	0,691

Bioquímica Inorgânica 2017-2018

4. a) Usando o diagrama de Tanabe-Sugano apropriado, calcule Δ_{oct} e B (em cm-1) para o complexo [Ni(H₂O)₆]²⁺, sabendo que apresenta três transições electrónicas: a 395 e 725 nm e outra com menor energia, não observada na gama de comprimentos de onda estudada. Faça uma estimativa do comprimento de onda da banda de menor energia.

- b) Represente o desdobramento e preenchimento dos níveis d e indique as configurações electrónicas do estado fundamental e dos estados excitados do complexo. Indique os termos moleculares correspondentes às três transições.
- c) Determine o termo que descreve o estado fundamental para o Ni(II) neste complexo.
- 5. a) Usando o diagrama de Tanabe-Sugano apropriado (em anexo), calcule B e Δ_{oct} para o complexo $[\text{Cr}(\textbf{NCS})_6]^{3-}$, sabendo que apresenta duas bandas de absorção no visível, a 17668 e 23753 cm⁻¹ e uma terceira na zona de ultravioleta.
 - b) Indique os termos moleculares correspondentes às três transições e determine o termo que caracteriza o estado fundamental do ião central livre.
 - c) O valor de Δ_{oct} esperado para o complexo $[Cr(SCN)_6]^{3-}$ deverá ser maior ou menor? Porquê?
- 6. a) O complexo [V(H₂O)₆]³⁺ tem duas bandas de absorção a 580 e 390 nm e uma terceira a maior energia. Utilizando o diagrama de Tanabe-Sugano apropriado, calcule os valores de Δ_{oct} e B (em cm⁻¹).
 - b) Represente o desdobramento dos níveis d e a distribuição electrónica do estado fundamental e dos estados excitados do complexo, indicando os termos moleculares correspondentes às três transições.
- 7. a) Determine os termos que descrevem o estado fundamental do ião V(III) livre e do complexo [VF₆]³⁻.
 - b) No espectro electrónico do complexo $[VF_6]^{3-}$ observam-se duas bandas de absorção, no visível, a 14800 e 23500 cm⁻¹, e uma terceira no UV. Calcule Δ_{oct} e B (em cm⁻¹) usando o diagrama de Tanabe-Sugano apropriado.
 - c) Indique os termos moleculares que descrevem os estados excitados correspondentes às duas transições observadas.
- 8. a) Determine os termos que descrevem o estado fundamental do ião Co(III) livre e do complexo [Co(en)₃]³⁺.
 - b) No espectro electrónico do complexo $[Co(en)_3]^{3+}$ observam-se duas bandas de absorção, a 466 e 336 nm. Calcule $\Delta_{\rm oct}$ e B (em cm⁻¹) usando o diagrama de Tanabe-Sugano apropriado. Indique os termos moleculares que descrevem os estados excitados correspondentes às duas transições observadas.

9. Calcule a variação da EECL que acompanha a oxidação do V^{2+} e do Cr^{2+} em solução aquosa, usando os valores de $\Delta_{\rm oct}$ dos complexos envolvidos nos dois processos. Justifique os valores obtidos.

composto	$\Delta_{ m oct}$ /cm $^{ extsf{-}1}$
$[V(H_2O)_6]^{2+}$	12 400
$[V(H_2O)_6]^{3+}$	17 850
$[Cr(H_2O)_6]^{2+}$	14 100
[Cr(H ₂ O) ₆] ³⁺	17 400